skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Radulescu, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predictive maintenance in truck fleet management is essential to reduce downtime and maintenance costs, yet traditional approaches often rely on static, rule-based schedules that fail to capture real-time operational variability. In this paper, we propose a robust digital twin (DT) framework for predictive maintenance specifically designed for tire predictive maintenance that integrates real-time tire health data, dynamic decision-making, and adaptive model updates to optimize tire resource allocation and enhance system health. Our framework is unique in its ability to incorporate uncertainty-aware dynamic programming, drift detection, and adaptive surrogate model updates within the digital twin. Specifically, we develop an uncertainty-aware dynamic linear programming (U-DLP) approach to optimize tire placement and servicing schedules based on continuously updated tire health data through surrogate model. To ensure DT reliability, we employ the maximum concept discrepancy (MCD) method to detect drift by identifying discrepancies between predicted and actual tire performance, thereby flagging data for necessary tire health model updates. Subsequently, we introduce an uncertainty-aware low-rank adaptation (U-LORA) method to efficiently update the tire health model by dynamically refining the surrogate model based on measured uncertainty. Simulation results indicate that our framework extends tire lifespan by nearly 50% compared to conventional methods, requiring fewer tires to achieve the same operational mileage, while also reducing tire waste and maintenance costs. This integrated digital twin framework offers a reliable and efficient solution for tire predictive maintenance, enhancing fleet sustainability and operational efficiency. 
    more » « less
    Free, publicly-accessible full text available August 17, 2026
  2. Abstract We introduce a novel digital twin framework for predictive maintenance of physical systems with long term operations. Using monitoring tire health as an application, we show how the digital twin framework is used to enhance automotive safety and efficiency, while overcoming technical challenges using a three-step approach. Firstly, for managing the data complexity over a long operation span, we employ data reduction techniques to concisely represent physical tires using historical performance and usage data. Relying on this data, for fast real-time prediction, we train a transformer-based model offline on our concise dataset to predict future tire health over time, represented as Remaining Casing Potential (RCP). Based on our architecture, our model quantifies both epistemic and aleatoric uncertainty, providing reliable confidence intervals around predicted RCP. Secondly, we incorporate real-time data by updating the predictive model in the digital twin framework, ensuring its accuracy throughout its life span with the aid of hybrid modeling and the use of a discrepancy function. Thirdly, to assist decision making in predictive maintenance, we implement a Tire State Decision Algorithm, which strategically determines the optimal timing for tire replacement based on RCP forecasted by our transformer model. This three-step approach ensures that our digital twin not only accurately predicts the health of a system, but also continually refines its digital representation and makes predictive maintenance decisions for removal from service. Our proposed digital twin framework embodies a physical system accurately and leverages big data and machine learning for predictive maintenance, model update and decision making. 
    more » « less